A new sentence similarity measure and sentence based extractive technique for automatic text summarization

نویسنده

  • Ramiz M. Aliguliyev
چکیده

The technology of automatic document summarization is maturing and may provide a solution to the information overload problem. Nowadays, document summarization plays an important role in information retrieval. With a large volume of documents, presenting the user with a summary of each document greatly facilitates the task of finding the desired documents. Document summarization is a process of automatically creating a compressed version of a given document that provides useful information to users, and multi-document summarization is to produce a summary delivering the majority of information content from a set of documents about an explicit or implicit main topic. In our study we focus on sentence based extractive document summarization. We propose the generic document summarization method which is based on sentence clustering. The proposed approach is a continue sentence-clustering based extractive summarization methods, proposed in Alguliev [Alguliev, R. M., Aliguliyev, R. M., Bagirov, A. M. (2005). Global optimization in the summarization of text documents. Automatic Control and Computer Sciences 39, 42–47], Aliguliyev [Aliguliyev, R. M. (2006). A novel partitioning-based clustering method and generic document summarization. In Proceedings of the 2006 IEEE/WIC/ACM international conference on web intelligence and intelligent agent technology (WI–IAT 2006 Workshops) (WI–IATW’06), 18–22 December (pp. 626–629) Hong Kong, China], Alguliev and Alyguliev [Alguliev, R. M., Alyguliev, R. M. (2007). Summarization of text-based documents with a determination of latent topical sections and information-rich sentences. Automatic Control and Computer Sciences 41, 132–140] Aliguliyev, [Aliguliyev, R. M. (2007). Automatic document summarization by sentence extraction. Journal of Computational Technologies 12, 5–15.]. The purpose of present paper to show, that summarization result not only depends on optimized function, and also depends on a similarity measure. The experimental results on an open benchmark datasets from DUC01 and DUC02 show that our proposed approach can improve the performance compared to sate-of-the-art summarization approaches. 2008 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biogeography-Based Optimization Algorithm for Automatic Extractive Text Summarization

    Given the increasing number of documents, sites, online sources, and the users’ desire to quickly access information, automatic textual summarization has caught the attention of many researchers in this field. Researchers have presented different methods for text summarization as well as a useful summary of those texts including relevant document sentences. This study select...

متن کامل

Experimental Investigating the F-measure as Similarity Measure for Automatic Text Summarization

This paper evaluates the performance of different similarity measures in the context of document summarization. For this purpose in this paper a simple and effective sentence extractive technique is used. The proposed method is based on evaluation of relevance score of sentence. Many measures are available for the calculation of inter sentence relationships. To calculate a similarity between se...

متن کامل

Hybrid Approach for Single Text Document Summarization Using Statistical and Sentiment Features

Summarization is a way to represent same information in concise way with equal sense. This can be categorized in two type Abstractive and Extractive type. Our work is focused around Extractive summarization. A generic approach to extractive summarization is to consider sentence as an entity, score each sentence based on some indicative features to ascertain the quality of sentence for inclusion...

متن کامل

مقایسه روش‌های مختلف یادگیری ماشین در خلاصه‌سازی استخراجی گفتار به گفتار فارسی بدون استفاده از رونوشت

In this paper, extractive speech summarization using different machine learning algorithms was investigated. The task of Speech summarization deals with extracting important and salient segments from speech in order to access, search, extract and browse speech files easier and in a less costly manner. In this paper, a new method for speech summarization without using automatic speech recognitio...

متن کامل

ارائه سیستم خلاصه ساز متون فارسی برمبنای ویژگی های زبان شناختی و رگرسیون

Considering the vast amount of existing written information and the shortage of time, optimal summarization of books, articles, news reports, etc. on the Web is a major concern of researchers. In this paper, we propose a new approach for Persian single-document Summarization based on several linguistic features of text. In our approach after extracting the linguistic features for each sentence,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Expert Syst. Appl.

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2009